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THE RAEAN
Given a set of variables

X=0x,,..X )

we define the mean (average)



EXARMPLE: ARMAZON

» Users can rate a product by voting 1-5 stars
» product rating is the mean of the user votes

Q" how can we rank products with different number of votes?




SHAPLE “BAYESIAN RANKING™
Cm + Rv
m-+Vv

rank —

» C - the mean vote across all items
» v - number of votes for a given item
» R - the mean rating of the item

» m - number of votes required to be in top n percentile



Book Number of votes (v) | Average Rating (R) Bayesian Rank
A 100 S) H4333333..
B 10 S) 417
C 50 4 35
D 30 4 3375
= a0 35 314
f 30 3 3
& S) 3 a.91
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EVENTS
» Consider an experiment whose set of all possible outcomes (),

called the sample space, is {x,.. ,Xn3

» We define an event E as a subset of () and say that E occurs
iff the experiment outcomes equal E
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INTERSECTION
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ProsABILITY Axtonns: |

» We denote the probability of an event A by P(A)
» for any event A, 0 < P(A) <1
» The certain event, (), always occurs and P(())=1

» The impossible event @ never occurs and P(D)=0



PROBABILITY AXIOMS: 2

> We say that events A and B are disjoint if ANB = @
> it A and B are disjoint then P(AUB) = P(A) + P(B)

» for a set of disjoint events, the addition law gives us:

p UE _f:P(E,J
=1

=1




[PROBABILITY LEAMNAS
> For any event E, P(E€) = P(—E) =1 - P(E)

» P(A—B) = P(A) — P(ANB)
» Ir AcB then P(A) < P(B)

» P(AuB) = P(H) + P(B) — P(AnB)

p UE —ZP(E) > P(E,RAED

=1 I<J

—I—EP(E;ﬂEijk)_-“ gt V4 - ﬂ '

I<j<k =)




I2ANDORN VARIABLES

Consider a random variable X, then {X<x1 is the event that X has a value less
than or equal to the real number x. Hence the probability that this event

occurs is P(X<x)

If we allow x to vary we can define the distribution function

F(x) =P(X<x) -00<x<
Note that:
> P(X>x) =1 - f(x)
> P(a<X<Db) = £(b) - F(a)



[PROBABILITY RAASS FUNCTION

The probability mass function (PMF) of X
F (X)=P(X=x)=PLscS: X(5)=x))

is a probability measure of the possible values for the

random variable. Of course Z f o () =1

XEA

PMF For a Fair £ % xc{l,4,3,4,5,61
6 sided dice X T 0 otherwise.
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BERNOULLY DISTRIBUTION
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PROBABILITY AXIOANS: 3

> Given two events A and B we define the conditional probability P(A | B) by:

P(ANB) =P(A | B) P(B)

> Given two events A and B we say that they are independent iff:

P(ANB) = P(A) P(B)



Prior £ PoSTERIOR DISTRIBUTIONS

» P(O) the prior probability distribution of O

» P(OIX) is the posterior probability of O given X

» The posterior probability can be written in the memorable form as:
posterior probability * likelihood * prior probability

» IFf the posterior distributions P(O|X) are in the same family as the
prior probability distribution P(0), the prior and posterior are then
called conjugate distributions, and the prior is called a conjugate
prior



) |
BAYES' THEOREM
from the definition of conditional probability we know:

P(A|B)P(B) =P(ANB)=P(B|AIP(A)

Hence

P(A|B)P(B)

P(B|A) =
P(A)

Or if By,..,.Bn Form a partition of the sample space
P(A|B)P(B)

P(B | A) =
> P(A|B)P(B)




EXAMPLE: IPREGNANCY TESTS

Pregnancy tests detect the presence of hCG, or human chorionic gonadotropin, in
the blood or urine

A “false positive™ is when the test incorrectly returns a positive result, and “false
negative™ when it incorrectly returns a false one.

false positives in the hcg test include:
» non-pregnant production of the hCG molecule
» use of drugs containing the hCG molecule
» Some medications cause a positive reaction in the tests

The actual probability of being pregnant depends on many messy biological factors



Test Positive

Test Negative
Pregnant?

Test Positive

Not Pregnant

Pregnant /
\
2

Test Negative



Pregnant?

P(B)
Pregnant

Not Pregnant
P(—=B)

o
S

P(BNA)
Test Positive

P(BN—A)
Test Negative

P(—BNA)
Test Positive

P(—=BNn—A)
Test Negative



Pregnant?

P(B)
Pregnant

Not Pregnant
P(—=B)

e
g

P(BNA)
Test Positive

P(BN—A)
Test Negative

P(—BNA)
Test Positive

P(—=BNn—A)
Test Negative



Q:Given the test is positive what is the probability
that the subject is pregnant?



Pregnant

false Positive
Test Result

false Negative

Negative

Positive /
;i
S5

Not Pregnant



Test Result

>(2))
Positive

Negative
P(—A)

o
S

P(ANB)
Pregnant

P(—=ANB)
false Positive

P(AN—B)
false Negative

P(—=AN—B)
Not Pregnant



Test Result

>(2))
Positive

Negative
P(—A)

o
g

P(ANB)
Pregnant

P(—=ANB)
false Positive

P(AN—B)
false Negative

P(—=AN—B)
Not Pregnant



EXARMPLE: DISEASE DIAGNOSIS

Q Consider the set S={s;: i = 0.N3 of all disease symptoms, and Ds.=(s; : si in SJ are
the diagnostically inclusive symptoms of Ebola, and Ds.={s; : si in S} the
exclusionary symptoms. Given a patient has some combination of symptoms
Ps={si: siin S}, what is the probability they have Ebola?

» The presence or absence of some symptoms can completely rule out the
diagnosis

» By updating the model based on real outcomes it is possible to provide more
and more accurate predictions



EXPECTED VALUES € RNOANENTS

> Suppose random variable X can take value x; with probability p;, value xa with

probability pa, and so on. Then the expectation of this random variable X is
defined as:

ELR] = pixi+ paXa+ .. + pkXk

» The variance of a random variable X is its second central moment, the
expected value of the squared deviation from the mean = ELX].

Var(X) = EL(X-p)2]



VARIANCE cd; COVARIANCE

» Variance is a measure of how far a set of numbers differs from the mean of
those numbers. The square root of the variance is the standard deviation O

» CERN uses the 5-sigma rule to rule out statistical anomalies in sensor
readings, i.e. is the value NOT the expected value of noise

» The covariance between two jointly distributed random variables X and Y
with Anite second moments is defined as:

o(X,Y) = EL(X - ELX]) e (Y - ELY])]
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END OF DETOUR



EXARMPLE: AMMAZON (REVISITED)

» Users can rate a product by voting 1-5 stars
» product rating is the mean of the user votes

Q: how can we rank products with different number of votes?




SIRMPLE “BAYESIAN RANKING

Cm -+ Ry
m-+v

rank —

Assume the vote posterior distribution is a Normal, then the prior is also a Normal*,
with mean

prior mean N
\
Tolbo 15 TZ Xi precision of vote
(=4 distribution
prior precision -~ o 75 L OT /

(*) hitp.//en.wikipedia.org/wiki/Conjugate _prior



http://en.wikipedia.org/wiki/Conjugate_prior
http://en.wikipedia.org/wiki/Conjugate_prior

EXAMPLE: YOUTUBE

» Users can rate a clip by voting +/-1

» clip rating is the mean of the user votes

» clips also record the number of views

Q" how can we compare clip ratings with different number of votes and views?

Q" how can we make results more relevant? e.g take in to account how old
ratings are, author provenance, cost of incorrect ranking promotion



“BAYESIAN IRANK”

Since this is a +/- Bernoulli Trial we can model the prior belief distribution by a
beta function*

F(X, Cte ﬁ) = 1 x“_l(l - x),B-—l

B(o, )

Let (x = upvote bias + number of up votes

Let ﬁ = downvote bias + number of down votes +1

Every time we receive a new vote we just recalculate the distribution



» To map between a belief and a sorting criterion we make a decision using a
loss function L

» Since the value of L depends on the value of a random variable we use
instead the expected value of L

» Consider a multilinear loss function:

k(X—x) x<X
X=X oo X
since we want to minimise the loss we have:
minCE L, (x, X)) = I, (U +1,041)
el
el k

L (x,X)=




EXTENDING THE LOSS FUNCTION

Suppose in addition to the vote counts we also record the timestamp of the
votes

Items becomes less relevant in the rank the longer it is since the last vote
following a pattern of exponential decay

Hence the current up or down vote count is now determined Dy

Thus we derive an updated rank function from

v'=vxa " 4+1
|
14k

I (Uxa ", Dxa™) =



THE HOUSE THAT SKYNET Bowrt

SkyNet SmartHome ™ is a system designed to manage the state of various
household resources, e.g. heating, lighting, media-centre, etc

it communicates with users smart phones to identify their location

its aims o are to maximise the comfort (e.g. room temperature, hot water) of
the users and minimise on waste (e.g. power consumption)

users can provide feedback to correct inappropriate behaviour, €. turning
the heating up too high



PREDICTING BEHAVIOUR

Q: Given the user is leaving the office what actions should Skynet smarthome
take?

» the variables could include:
» day of the week
» work day or holiday
» weather
) season

» calendar events



BAYESIAN NETWORKS

» A BN is a probabilistic directed acyclic graphical model that represents a set of
random variables and their conditional dependencies

» Vertices may be observable quantities, latent variables, unknown parameters
or hypotheses

» Vertices that are not connected represent variables that are conditionally
independent of each other






EXAMPLE: CANCER

P(S)

TRUE

0.3

| FALSE

0.7

P S P(CIPnS)
oW T 0.03
_ow t 0.001
ligh T 0.05
ligh f 0.0a

P P(P)
Low 0.9
High 01

P(XRay+C)
09
0.3

P(D+C)

0.65

0.3




IPREDICTIVE IREASONING

Smoker

bV TDENC

' Direction of Reasoning




DIAGNOSTIC IZEASONING

Dyspnoea

VIDENC

~ Direction of Reasoning




INTERCAUSAL REASONING

Smoker

VIDENC

Cancer

P\ IDENC




COMBINED IREASONING

Smoker

o IDENCE

Dyspnoea
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STOCHASTIC IPROCESS

» A stochastic process, or random process, is a collection of random variables
representing the evolution of some system over time

» Examples: stock market value and exchange rate fluctuations, audio and video
signals, EKG & EEG readings

» They can be classified as:

» Discrete time & discrete space

» Discrete time & continuous space
» Continuous time & discrete space

» Continuous time & continuous space



A DETOUR IN TO RAATRIX
ALGEBRA



VECTORS £ RAMATRICES

a _ _
: bl | bl a Dl 3
A= a B—
ba,l ba,a Da,s
83 : _
1x3 matrix

3xa matrix
or vector



ANATRIX ADDITION

If A and B are two m b‘x)n matrices then addition is defined Dy:

=C,where €, =A, + 8,

dpirodn Dn Dln
o4 8 it B
aml i amn _ le o bmn _
a, + bn s i bln
o ' a.+b, :
| am1+bm1 a,, +bmn ;




ANATRIX ARULTIPLICATION
If A is n*m matrix and B is an m*p matrix then multiplication is defined by:

), (AR

H’B:HB: : o X
(AB), - (AB),

where

(A=) 2.5,
k=1



all

aal

allb 11

aal bll

ala

aaa

o ala bal
aaa b‘o\l

bll

_ bal

bla
baa

allb 12 5 alabaa

aal bla

aaa baa




by, 4
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| [Bbyaaby 2.0, + 220,

l aalbll T aaabél aalbla = aaabaa J
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l aal aaa J l

| @by +aaby  [EORSRERORS

l aalbll T aaabél aalbla = aaabaa J
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J |
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THE IDENTITY RAATRIX

If A is n*m matrix and then the identity matrix I is an m*n matrix such that A I=A.
I is defined by:

| €1 — 7
F?,J. ==
O otherwise

So the 3*3 identity matrixis. [

0.0
o 10
0 0 1
\

)



INVERSE RMATRIX

If A is n*n matrix and then the inverse of A, AL is an n*n matrix such that A
A-l=1. Non-square matrices do not have inverses

( \( Nale-iz
a8y b, by

e
1

|
a a b, b, 0
: al aa N al ad g \

anbn & a1ab31 =1, aubla 5 alabaa =0
ambn G aaabzn =0, aa1b1a 7 aaabaa =1

)



AAATRIX TRANSPOSITION

If A is n*m matrix and then the transpose of A , AT, is an m*n matrix defined by:

a0
T
for example, consider a a*a matrix:

7

a b a d
d ¢ D¢



END OF DETOUR



» A Markov chain is a directed graph whose vertices represent
states and the edges the probability of transition between
the two states

» frequently we use an adjacency matrix representation of
the graph T called the transition matrix

» Hence for a chain with N vertices the transition matrix is NxN
» The initial state of the system, So, is also an NxN matrix
» The state evolves according to Sp = SaT = ST

» The value of Snuq,j Is the probability of being at that state in
step n+l



EXAMMPLE: BRITISH WEATHER

» England is the land of rain. We never have two nice days in a row. In fact if a
nice day is always followed by either rain or snow. If there is a change from

rain or snow only half the time is this a change to sunny weather

Rain  Nice  Snow
pain | 1/2a 14 1/M \
T =Nice| 1/3a 0 1/3
Snow | M M /A

‘



RiaelNe =S

ya 6 1
RARLERT

173 LU

/




» We can determine the long-term state of the process by calculating T* as n
increases towards infinity. The system will converge on a stationary value.

» For our weather example we find:

Rain Nice Snow

Rain 4/10 a/10 H/10
Nice 4/10 a/10 H/10

Snow 4H/10 a/10 H/10



ABSORBING RAARKOV CHAINS

» A state s; of a Markov chain is called absorbing if it is impossible to leave it (ie,
Tii=1)

» A Markov chain is absorbing if:
» it has at least one absorbing state
> every state is connected to at least one absorbing state

» In an absorbing Markov chain, the probability that the process will be absorbed
isl(ie,Q@ — O0asn — )



EXARPLE: THE WANDERING DRUNK

» Consider a city divided up in some some grid, e.9. square blocks.

» The drunk can move 1 block per turn, each direction has equal probability
» IFf the drunk reaches Home or the Bar they will stay there

> Questions we can answer:

» What is the expect time until an absorbing state is reached?
» How many fimes does the drunk visit each intersection?



EXARPLE: PREDICTIVE TEXTING



HIDDEN RAARKOV AMODELS

The name is misleading! Nothing is unknown...

In a basic Markov model the states of the system are visible. E.g. we can see if
it is snowing

In a hidden Markov Model the (enftire) state is not directly visible but some
outputs dependent on the state are observable

However we still need to know all the transition probability values!



ANARKOV DECISION PROCESSES

Markov decision processes are an extension of Markov chains, the difference is
the addition of actions (allowing choice) and rewards (giving motivation)

A Markov decision process is a 5-tuple (S, A, Pq, Ra, L)

The core problem is to choose an action Tt that will maximise some cumulative
function, e..

ZL,R@(s,,s, 1), where A,=7(s)
=0

MDPs can be easily solved Dy linear (e.g. Simplex method) or dynamic programming
(e.g. Map-Reduce)
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A LINEAR DYNARNIC SYSTERMN

» Continuous time definition:

2x(7‘): A-x(1)
Ot

» Discrete time definition:
X, . — X

» The systems are called linear since given any two solutions x(t) & y(1) then
any linear combination of these solutions is also a solution

2(H) = ax(#) + By(#)



EXAMPLE: CLIMATE CONTROL

SkyNet SmartHome ™ is able to monitor the temperature of rooms in the house
and effect heating/AC to regulate the temperature

The temperature sensors contain noise

heating and AC are either ON or OFff

similar systems exist for humidity



CONSIDER...

A—AK L Bu W



KALAAN FULTERS

Developed ~1960 by Rudolf E. Kalman, Peter Swerling, and Richard S. Bucy.
first implemented in NASA as part of the Apollo navigation computer

Still used in many aecronautic and military applications, €.@. submarines, cruise
missiles, NASA Space Shuttle, ISS

There are generalisation of the basic Kalman filters for continuous time
systems as well as non-linear systems



» Kalman filters work by making a prediction of the future, getting a
measurement from reality, comparing the two, moderating this difference, and

adjusting its estimate with this moderated value.
» Kalman filters are.
» discrete
> recursive

> Extremely accurate if you have a good model



OVERV‘EW

current

: measured
estimate

l value

14 s -
Xe =K, - Z, +(1—K ) Xgs

Kalman gain /

previous
estimate



BASIC KALAMAN FULTERS

Modelled on a Markov chain built on linear operators perturbed by errors that
may include Gaussian noise

The state of the system is represented Dy a vector of real numbers

The filter is recursive, i.e. only the estimated state from the previous time step
and the current measurement are needed to compute the estimate for the
current state

typically we describe the algorithm in two phases: predict & update



|: PREDICT: STATE ESTIAMATION

State transition Control matrix

matrix
A\ l A\

Xo =0 Xo1+8-U
N N 1 ) =21

X /

Predicted state Coptrolvector

Previous estimate of
state



Z: PREDICT: ERROR ESTHNAATION

State transition

ma’rrIX\ :
Pn—F)P A+ &

/

Covariance prediction

Previous Estimated process
covariance error covariance

estimate



3. UPDATE: INNOVATION COVARIANCE

Observation Matrix

Measurement Vector
\ / AN
—=2 — H:- X

it - /

Covariance Innovation
Predicted state (step 1)




4: UPDATE: INNOVATION COVARIANCE

Observation Matrix

o G
S=H-P,-H +R

/ Covariance prediction \

gOV&f'agce (step A) Estimated measurement erro
nnovamnon covariance




5 UPDATE: KALAAAN GAIN
Covariance prediction Observation Matrix

(sfe.pa)\/\ /
/K =y o

Kalman Gain

Covariance Innovation
(step 3)



©: UPDATE: STATE

Predicted state (step 1) Covariance Innovation

\ (step 3)

New state estimate /

Kalman Gain (step 5)




1. UPDATE: COVARIANCE

Kalman Gain (step 5)

¥ T

ry ¥ A\
i P E— ®
| V & ——
' g 7 n

New estimate of / \

error
Observation Matrix 5
Covariance

prediction (step 3)



EXAMPLE: VOLTRNETER

Consider a voltmeter measuring a constant DC voltage via a sensor with noise.

The system can De described by:
Vo = Va1 + Wi

Since the voltage is constant using a Kalman filter allows us to flter out the
noise Wn

Also since this is a single state example all matrices are of size 1*1



4

A: State transition - since the previous state should equal the current state
A=1

H: Observation transform - since we’re taking direct measurements from the
sensor H=1

B: Control matrix - we have no controls so =0

Q: Process covariance - since we know the model very accurately @=0.00001
R: Measurement covariance - we don’t trust the sensor too much so R=0.1

X: Initial state estimate = any number

/P\: Inital covariance estimate = 1 (because)



;(B 20—1
P, =P _, + 000001

zn—Xa

P, +01
=P .5
Xo=Xo+Ky
P,=(I—K)P;

y
S
K



AN

P .+ 000001
(P, +0.00001) + 01

Xo=Kz —(K—1)X,4
P, =(1—KXP, , +000001)

x




Voltage Measurement with Kalman Filter
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—— true voltage
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AS A PROGRAAANER YOUR
CHALLENGE K TO FIND THE RIGHT
FILTER ANODEL AND DETERANNE
THE VALUES OF THE AMATRICES




EXAMPLE: ROBO-COPTER

FREEZIN g
ESKIND

XCELL TEAMPEST
HELICOPTER




RLUHELICOPTER

» http.//library.rl-community.org/wiki/Helicopter (Java)

» Sensors to determine:
> bearing
» acceleration (velocity)
» position (GPS)
» rotational rates
» inertial measurement unit

» and more..


http://library.rl-community.org/wiki/Helicopter_(Jav%60
http://library.rl-community.org/wiki/Helicopter_(Jav%60
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BOOKS

Introduction to Probability - Grindstead & Snell
http://www.dartmouth.edu/~chance/teaching aids/books articles/probability book/book himl

Bayesian Artificial Intelligence - Kevin b. Korb & Ann E. Nicholson
An Introduction to Stochastic Modelling - Mark A Pinsky & Samuel Karlin
Stochastic Processes and filtering Theory - Andrew H. Jazwinski

Artificial Intelligence: A Modern Approach - Stuart Russell and Peter Norvig



JAVA LIBRARIES

Apache Commons Math: http.//commons.apache.org/proper/commons-math/

Colt - high performance data structures and algorithms: http://dst.Ibl.eov/
ACSSoftware/colt/

Parallel Colt: https.//sites.google.com/site/piotrwendykier/software/parallelcolt

JBlas - high performance Java API for native libraries LAPACK, BLAS, & ATLAS:
http://mikiobraun.github.io/ jblas/

The rest.. http.//code.google.com/p/ java-matrix-Denchmark/

Jayes - A Java framework for Bayesian Networks


http://commons.apache.org/proper/commons-math/
http://commons.apache.org/proper/commons-math/
http://dst.lbl.gov/ACSSoftware/colt/
http://dst.lbl.gov/ACSSoftware/colt/
http://dst.lbl.gov/ACSSoftware/colt/
http://dst.lbl.gov/ACSSoftware/colt/
https://sites.google.com/site/piotrwendykier/software/parallelcolt
https://sites.google.com/site/piotrwendykier/software/parallelcolt
http://mikiobraun.github.io/jblas/
http://mikiobraun.github.io/jblas/
http://code.google.com/p/java-matrix-benchmark/
http://code.google.com/p/java-matrix-benchmark/

OTHER RESOURCES
http://www.probabilitycourse.com

http://masanjin.net/blog/bayesian-average - detailed derivation of bayesian
averaging via normal distributions

http://Fulmicoton.com/posts/bayesian_rating/ - an alternative derivation of
bayesian “averaging”

http://www.tina-vision.net/docs/memos/1996-002.pdf - a beautifully simple
derivation of Kalman filters

http://www.intechopen.com/books/kalman-flter - arficles on applications of
Kalman filters


http://www.probabilitycourse.com
http://www.probabilitycourse.com
http://masanjin.net/blog/bayesian-average
http://masanjin.net/blog/bayesian-average
http://fulmicoton.com/posts/bayesian_rating/
http://fulmicoton.com/posts/bayesian_rating/
http://www.tina-vision.net/docs/memos/1996-002.pdf
http://www.tina-vision.net/docs/memos/1996-002.pdf
http://www.intechopen.com/books/kalman-filter
http://www.intechopen.com/books/kalman-filter
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