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Bayesian Probability

& 
Bayesian Statistics



The Mean
Given a set of variables 

we define the mean (average) 



Example: Amazon

‣ Users can rate a product by vo!ng 1-5 stars

‣ product ra!ng is the mean of the user votes

Q: how can we rank products with different number of votes?



Simple “Bayesian Ranking”

‣ C - the mean vote across all items

‣ v - number of votes for a given item

‣ R - the mean ra!ng of the item

‣ m - number of votes required to be in top n percen!le



Book Number of votes (v) Average Ra!ng (R) Bayesian Rank

A 100 5 4.333333...

B 70 5 4.17

C 50 4 3.5

D 30 4 3.375

E 20 3.5 3.14

F 30 3 3

G 5 2 2.91

C = 3 m = 50



A Detour In To 
Probability Basics



Events
‣ Consider an experiment whose set of all possible outcomes Ω, 

called the sample space, is {x1,... ,xn}

‣ We define an event E as a subset of Ω and say that E occurs 
iff the experiment outcomes equal E



Union



Intersection



Probability Axioms: 1

‣ We denote the probability of an event A by P(A)

‣ For any event A, 0 ≤ P(A) ≤ 1

‣ The certain event, Ω, always occurs and P(Ω)=1

‣ The impossible event Ø never occurs and P(Ø)=0



‣ We say that events A and B are disjoint if A⋂B = Ø

‣ if A and B are disjoint then P(A⋃B) = P(A) + P(B)
‣ for a set of disjoint events, the addi!on law gives us:

Probability Axioms: 2



‣ For any event E, P(Ec) = P(¬E) = 1 - P(E)

‣ P(A−B) = P(A) − P(A∩B)

‣ If A⊂B then P(A) ≤ P(B)

‣ P(A∪B) = P(A) + P(B) − P(A∩B)

Probability Lemmas



‣ Consider a random variable X, then {X≤x} is the event that X has a value less 
than or equal to the real number x. Hence the probability that this event 
occurs is P(X≤x)

‣ If we allow x to vary we can define the distribu!on func!on

F(x) = P(X≤x)     -∞ < x < ∞
‣ Note that:

‣ P(X>x) = 1 - F(x)

‣ P(a<X<b) = F(b) - F(a)

Random Variables



Probability Mass Function
The probability mass func!on (PMF) of X

is a probability measure of the possible values for the 

random variable. Of course

PMF for a fair 
6 sided dice



1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

2 3 4 5 6 7 8 9 10 11 12

1,1 2,1 3,1 4,1 5,1 6,1 6,2 6,3 6,4 6,5 6,6

1,2 2,2 3,2 4,2 5,2 5,3 5,4 5,5 5,6

1,3 2,3 3,3 4,3 4,4 4,5 4,6

1,4 2,4 3,4 3,5 3,6

1,5 2,5 2,6

1,6

Example: PMF of 2 Fair Die
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Binomial Distribution



Probability Axioms: 3

‣ Given two events A and B we define the condi!onal probability P(A | B) by:

P(A⋂B) = P(A | B) P(B)

‣ Given two events A and B we say that they are independent iff:

P(A⋂B) = P(A) P(B)



‣ P(θ) the prior probability distribu!on of θ
‣ P(θ|X) is the posterior probability of θ given X

‣ The posterior probability can be written in the memorable form as:

posterior probability * likelihood * prior probability

‣ If the posterior distribu!ons P(θ|X) are in the same family as the 
prior probability distribu!on P(θ), the prior and posterior are then 
called conjugate distribu!ons, and the prior is called a conjugate 
prior

Prior & Posterior Distributions



Bayes’ Theorem
From the defini!on of condi!onal probability we know:

Hence

Or if B1,...,Bn form a par!!on of the sample space



Example: Pregnancy Tests
‣ Pregnancy tests detect the presence of hCG, or human chorionic gonadotropin, in 

the blood or urine

‣ A “false posi!ve” is when the test incorrectly returns a posi!ve result, and “false 
nega!ve” when it incorrectly returns a false one.

‣ False posi!ves in the hcg test include:

‣ non-pregnant produc!on of the hCG molecule

‣ use of drugs containing the hCG molecule

‣ Some medica!ons cause a posi!ve reac!on in the tests

‣ The actual probability of being pregnant depends on many messy biological factors



Pregnant?

Pregnant

Not Pregnant

Test Posi!ve

Test Nega!ve

Test Posi!ve

Test Nega!ve
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Q:Given the test is posi!ve what is the probability 
that the subject is pregnant?



Test Result
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Example: Disease Diagnosis

Q: Consider the set S={si : i = 0...N} of all disease symptoms, and Ds+={si : si in S} are 
the diagnos!cally inclusive symptoms of Ebola, and Ds-={si : si in S} the 
exclusionary symptoms. Given a pa!ent has some combina!on of symptoms 
Ps={si : si in S}, what is the probability they have Ebola?

‣ The presence or absence of some symptoms can completely rule out the 
diagnosis

‣ By upda!ng the model based on real outcomes it is possible to provide more 
and more accurate predic!ons



‣ Suppose random variable X can take value x1 with probability p1, value x2 with 
probability p2, and so on. Then the expecta!on of this random variable X is 
defined as:

E[X] = p1x1 + p2x2 + ... + pkxk

‣ The variance of a random variable X is its second central moment, the 
expected value of the squared devia!on from the mean μ = E[X]:

Var(X) = E[(X-μ)2]

Expected Values & Moments



‣ Variance is a measure of how far a set of numbers differs from the mean of 
those numbers. The square root of the variance is the standard devia!on σ
‣ CERN uses the 5-sigma rule to rule out sta!s!cal anomalies in sensor 

readings, i.e. is the value NOT the expected value of noise

‣ The covariance between two jointly distributed random variables X and Y 
with finite second moments is defined as:

σ(X,Y) = E[(X - E[X]) • (Y - E[Y])]

Variance & Covariance



Gaussian Distribution
P(

x)

xμ σ 2σ 3σ 4σ 5σ



Beta Distribution



End of Detour



Example: Amazon (Revisited)

‣ Users can rate a product by vo!ng 1-5 stars

‣ product ra!ng is the mean of the user votes

Q: how can we rank products with different number of votes?



Simple “Bayesian Ranking”

Assume the vote posterior distribu!on is a Normal, then the prior is also a Normal*, 
with mean

(*) http://en.wikipedia.org/wiki/Conjugate_prior

prior mean

prior precision

precision of vote 
distribu!on

http://en.wikipedia.org/wiki/Conjugate_prior
http://en.wikipedia.org/wiki/Conjugate_prior


Example: YouTube

‣ Users can rate a clip by vo!ng +/-1

‣ clip ra!ng is the mean of the user votes

‣ clips also record the number of views

Q: how can we compare clip ra!ngs with different number of votes and views? 

Q: how can we make results more relevant? e.g. take in to account how old 
ra!ngs are, author provenance, cost of incorrect ranking promo!on 



“Bayesian Rank”
‣ Since this is a +/- Bernoulli Trial we can model the prior belief distribu!on by a 

beta func!on*

‣ Let     = upvote bias + number of up votes

‣ Let     = downvote bias + number of down votes + 1

‣ Every !me we receive a new vote we just recalculate the distribu!on



‣ To map between a belief and a sor!ng criterion we make a decision using a 
loss func!on L

‣ Since the value of L depends on the value of a random variable we use 
instead the expected value of L

‣ Consider a mul!linear loss func!on:

since we want to minimise the loss we have:



Extending The Loss Function
‣ Suppose in addi!on to the vote counts we also record the !mestamp of the 

votes

‣ Items becomes less relevant in the rank the longer it is since the last vote 
following a pattern of exponen!al decay

‣ Hence the current up or down vote count is now determined by

‣ Thus we derive an updated rank func!on from



The House THat Skynet Built

‣ SkyNet SmartHome™ is a system designed to manage the state of various 
household resources, e.g. hea!ng, ligh!ng, media-centre, etc

‣ it communicates with users smart phones to iden!fy their loca!on

‣ its aims to are to maximise the comfort (e.g. room temperature, hot water) of 
the users and minimise on waste (e.g. power consump!on)

‣ users can provide feedback to correct inappropriate behaviour, e.g turning 
the hea!ng up too high



Predicting Behaviour
Q: Given the user is leaving the office what ac!ons should Skynet smarthome 

take?

‣ the variables could include:

‣ day of the week

‣ work day or holiday

‣ weather

‣ season

‣ calendar events



Bayesian Networks

‣ A BN is a probabilis!c directed acyclic graphical model that represents a set of 
random variables and their condi!onal dependencies

‣ Ver!ces may be observable quan!!es, latent variables, unknown parameters 
or hypotheses

‣ Ver!ces that are not connected represent variables that are condi!onally 
independent of each other



Example: Cancer

Cancer

SmokerPollu!on

DyspnoeaX-Ray



C P(D+|C)

T 0.65

F 0.3

S P(S)

TRUE 0.3

FALSE 0.7

P P(P)

Low 0.9

High 0.1

C P(XRay+|C)

T 0.9

F 0.2

P S P(C|PnS)
Low T 0.03
Low F 0.001
High T 0.05
High F 0.02

Example: Cancer



Predictive Reasoning
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Diagnostic Reasoning

Cancer

SmokerPollu!on

DyspnoeaX-Ray Di
re

c!
on

 o
f R

ea
so

ni
ng

EVIDENCE

QUERY

QUERYQUERY



Intercausal Reasoning

Cancer

SmokerPollu!on

DyspnoeaX-Ray

EVIDENCE

QUERY EVIDENCE



Combined Reasoning

Cancer

SmokerPollu!on

DyspnoeaX-Ray

EVIDENCE

QUERY

EVIDENCE



- Chapter II -
Markov Models



Stochastic Process

‣ A stochas!c process, or random process, is a collec!on of random variables 
represen!ng the evolu!on of some system over !me

‣ Examples: stock market value and exchange rate fluctua!ons, audio and video 
signals, EKG & EEG readings

‣ They can be classified as:

‣ Discrete !me & discrete space
‣ Discrete !me & con!nuous space
‣ Con!nuous !me & discrete space
‣ Con!nuous !me & con!nuous space



A Detour In To Matrix 
Algebra



Vectors & Matrices

1x3 matrix
or vector 3x2 matrix



Matrix Addition
If A and B are two m by n matrices then addi!on is defined by:



Matrix Multiplication

where

If A is n*m matrix and B is an m*p matrix then mul!plica!on is defined by:













The Identity Matrix
If A is n*m matrix and then the iden!ty matrix I is an m*n matrix such that A I=A. 
I is defined by:

So the 3*3 iden!ty matrix is:



Inverse Matrix
If A is n*n matrix and then the inverse of A , A-1, is an n*n matrix such that A 
A-1=I. Non-square matrices do not have inverses



Matrix Transposition
If A is n*m matrix and then the transpose of A , AT, is an m*n matrix defined by:

For example, consider a 2*2 matrix:



End of Detour



‣ A Markov chain is a directed graph whose ver!ces represent 
states and the edges the probability of transi!on between 
the two states

‣ Frequently we use an adjacency matrix representa!on of 
the graph T called the transi!on matrix

‣ Hence for a chain with N ver!ces the transi!on matrix is NxN

‣ The ini!al state of the system, S0, is also an NxN matrix

‣ The state evolves according to Sn+1 = SnT = STn

‣ The value of Sn+1(i,j) is the probability of being at that state in 
step n+1



Nice

Example: British Weather
‣ England is the land of rain. We never have two nice days in a row. In fact if a 

nice day is always followed by either rain or snow. If there is a change from 
rain or snow only half the !me is this a change to sunny weather

Rain Nice Snow

Rain

Snow



Rain Nice

Snow
1/4

1/4

1/4

1/4

1/2

1/2

1/2

1/2

0

R N S
R
N
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‣ We can determine the long-term state of the process by calcula!ng Tn as n 
increases towards infinity. The system will converge on a sta!onary value.

‣ For our weather example we find:

Nice

Rain Nice Snow

Rain

Snow

4/10

4/10

4/10

4/10

4/10

4/10

2/10

2/10

2/10



Absorbing Markov Chains

‣ A state si of a Markov chain is called absorbing if it is impossible to leave it (i.e., 
Ti,i = 1)

‣ A Markov chain is absorbing if:

‣ it has at least one absorbing state

‣ every state is connected to at least one absorbing state

‣ In an absorbing Markov chain, the probability that the process will be absorbed 
is 1 (i.e., Qn → 0 as n → ∞)



Example: The Wandering Drunk

‣ Consider a city divided up in some some grid, e.g. square blocks. 

‣ The drunk can move 1 block per turn, each direc!on has equal probability

‣ If the drunk reaches Home or the Bar they will stay there

‣ Ques!ons we can answer:

‣ What is the expect !me un!l an absorbing state is reached?
‣ How many !mes does the drunk visit each intersec!on?



Example: Predictive Texting



Hidden Markov models

‣ The name is misleading! Nothing is unknown...

‣ In a basic Markov model the states of the system are visible. E.g. we can see if 
it is snowing

‣ In a hidden Markov Model the (en!re) state is not directly visible but some 
outputs dependent on the state are observable

‣ However we s!ll need to know all the transi!on probability values!



Markov decision processes

‣ Markov decision processes are an extension of Markov chains; the difference is 
the addi!on of ac!ons (allowing choice) and rewards (giving mo!va!on)

‣ A Markov decision process is a 5-tuple (S, A, PA, RA, L)

‣ The core problem is to choose an ac!on π that will maximise some cumula!ve 
func!on, e.g.

‣ MDPs can be easily solved by linear (e.g. Simplex method) or dynamic programming 
(e.g. Map-Reduce)



- Chapter III -
Kalman Filters



A Linear Dynamic System
‣ Con!nuous !me defini!on:

‣ Discrete !me defini!on:

‣ The systems are called linear since given any two solu!ons x(t) & y(t) then 
any linear combina!on of these solu!ons is also a solu!on



Example: Climate Control

‣ SkyNet SmartHome™ is able to monitor the temperature of rooms in the house 
and effect hea!ng/AC to regulate the temperature

‣ The temperature sensors contain noise

‣ hea!ng and AC are either ON or OFF

‣ similar systems exist for humidity



Consider...



Kalman Filters

‣ Developed ~1960 by Rudolf E. Kálmán, Peter Swerling, and Richard S. Bucy.

‣ First implemented in NASA as part of the Apollo naviga!on computer

‣ S!ll used in many aeronau!c and military applica!ons, e.g. submarines, cruise 
missiles, NASA Space Shuttle, ISS

‣ There are generalisa!on of the basic Kalman filters for con!nuous !me 
systems as well as non-linear systems



‣ Kalman Filters work by making a predic!on of the future, get!ng a 
measurement from reality, comparing the two, modera!ng this difference, and 
adjus!ng its es!mate with this moderated value.

‣ Kalman filters are:

‣ discrete

‣ recursive

‣ Extremely accurate if you have a good model



Overview
current
es!mate measured

value

previous
es!mate

Kalman gain



Basic Kalman Filters

‣ Modelled on a Markov chain built on linear operators perturbed by errors that 
may include Gaussian noise

‣ The state of the system is represented by a vector of real numbers

‣ The filter is recursive, i.e. only the es!mated state from the previous !me step 
and the current measurement are needed to compute the es!mate for the 
current state

‣ typically we describe the algorithm in two phases: predict & update



1: Predict: State Estimation

Predicted state 
Previous es!mate of 

state 

Control vector

State transi!on 
matrix

Control matrix



2: Predict: Error Estimation
State transi!on 

matrix

Es!mated process 
error covariance

Covariance predic!on
Previous 

covariance
es!mate



3: Update: Innovation Covariance

Observa!on Matrix
Measurement Vector

Covariance Innova!on
Predicted state (step 1)



4: Update: Innovation Covariance

Observa!on Matrix

Covariance predic!on
(step 2)Covariance

Innova!on
 Es!mated measurement error 

covariance



5: Update: Kalman Gain
Observa!on Matrix

Kalman Gain

Covariance predic!on
(step 2)

Covariance Innova!on
(step 3)



6: Update: State

Kalman Gain (step 5)

New state es!mate

Predicted state (step 1) Covariance Innova!on
(step 3)



7: Update: Covariance

New es!mate of 
error

Kalman Gain (step 5)

Observa!on Matrix Covariance 
predic!on (step 2)



Example: Voltmeter

‣ Consider a voltmeter measuring a constant DC voltage via a sensor with noise.

‣ The system can be described by:

Vn = Vn-1 + wn

‣ Since the voltage is constant using a Kalman filter allows us to filter out the 
noise wn

‣ Also since this is a single state example all matrices are of size 1*1



‣ A: State transi!on - since the previous state should equal the current state 
A=1

‣ H: Observa!on transform - since we’re taking direct measurements from the 
sensor H=1

‣ B: Control matrix - we have no controls so B=0

‣ Q: Process covariance - since we know the model very accurately Q=0.00001

‣ R: Measurement covariance - we don’t trust the sensor too much so R=0.1

‣ X: Ini!al state es!mate = any number

‣ P: Inital covariance es!mate =  1 (because)









As a programmer your 
challenge is to find the right 
filter model and determine 
the values of the matrices



Example: Robo-copter

XCell Tempest
Helicopter

Freezin
Eskimo



RL:Helicopter

‣ http://library.rl-community.org/wiki/Helicopter_(Java)

‣ Sensors to determine:

‣ bearing

‣ accelera!on (velocity)

‣ posi!on (GPS)

‣ rota!onal rates

‣ iner!al measurement unit

‣ and more...

http://library.rl-community.org/wiki/Helicopter_(Jav%60
http://library.rl-community.org/wiki/Helicopter_(Jav%60


Summary





Events & Random Variables
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Books

‣ Introduc!on to Probability - Grindstead & Snell
http://www.dartmouth.edu/~chance/teaching_aids/books_ar!cles/probability_book/book.html

‣ Bayesian Ar!ficial Intelligence - Kevin B. Korb & Ann E. Nicholson

‣ An Introduc!on to Stochas!c Modelling - Mark A Pinsky & Samuel Karlin

‣ Stochas!c Processes and Filtering Theory - Andrew H. Jazwinski

‣ Ar!ficial Intelligence: A Modern Approach - Stuart Russell and Peter Norvig



Java Libraries
‣ Apache Commons Math: http://commons.apache.org/proper/commons-math/

‣ Colt - high performance data structures and algorithms: http://dst.lbl.gov/
ACSSoftware/colt/

‣ Parallel Colt: https://sites.google.com/site/piotrwendykier/software/parallelcolt

‣ JBlas - high performance Java API for na!ve libraries LAPACK, BLAS, & ATLAS: 
http://mikiobraun.github.io/jblas/

‣ The rest... http://code.google.com/p/java-matrix-benchmark/

‣ Jayes - A Java framework for Bayesian Networks

http://commons.apache.org/proper/commons-math/
http://commons.apache.org/proper/commons-math/
http://dst.lbl.gov/ACSSoftware/colt/
http://dst.lbl.gov/ACSSoftware/colt/
http://dst.lbl.gov/ACSSoftware/colt/
http://dst.lbl.gov/ACSSoftware/colt/
https://sites.google.com/site/piotrwendykier/software/parallelcolt
https://sites.google.com/site/piotrwendykier/software/parallelcolt
http://mikiobraun.github.io/jblas/
http://mikiobraun.github.io/jblas/
http://code.google.com/p/java-matrix-benchmark/
http://code.google.com/p/java-matrix-benchmark/


Other Resources
‣ http://www.probabilitycourse.com

‣ http://masanjin.net/blog/bayesian-average - detailed deriva!on of bayesian 
averaging via normal distribu!ons

‣ http://fulmicoton.com/posts/bayesian_ra!ng/ - an alterna!ve deriva!on of 
bayesian “averaging”

‣ http://www.!na-vision.net/docs/memos/1996-002.pdf - a beau!fully simple 
deriva!on of Kalman filters

‣  http://www.intechopen.com/books/kalman-filter - ar!cles on applica!ons of 
Kalman filters

http://www.probabilitycourse.com
http://www.probabilitycourse.com
http://masanjin.net/blog/bayesian-average
http://masanjin.net/blog/bayesian-average
http://fulmicoton.com/posts/bayesian_rating/
http://fulmicoton.com/posts/bayesian_rating/
http://www.tina-vision.net/docs/memos/1996-002.pdf
http://www.tina-vision.net/docs/memos/1996-002.pdf
http://www.intechopen.com/books/kalman-filter
http://www.intechopen.com/books/kalman-filter


Thank You



Probably, Definitely, 
Maybe

James McGivern


